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Abstract Zona glomerulosa cells (ZG) of the adrenal gland constantly integrate fluctuating ionic,
hormonal and paracrine signals to control the synthesis and secretion of aldosterone. These signals
modulate Ca2+ levels, which provide the critical second messenger to drive steroid hormone
production. Angiotensin II is a hormone known to modulate the activity of voltage-dependent
L- and T-type Ca2+ channels that are expressed on the plasma membrane of ZG cells in many
species. Because the ZG cell maintains a resting membrane voltage of approximately −85 mV and
has been considered electrically silent, low voltage-activated T-type Ca2+ channels are assumed
to provide the primary Ca2+ signal that drives aldosterone production. However, this view
has recently been challenged by human genetic studies identifying somatic gain-of-function
mutations in L-type CaV1.3 channels in aldosterone-producing adenomas of patients with
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primary hyperaldosteronism. We provide a review of these assumptions and challenges, and
update our understanding of the state of the ZG cell in a layer in which native cellular associations
are preserved. This updated view of Ca2+ signalling in ZG cells provides a unifying mechanism
that explains how transiently activating CaV3.2 channels can generate a significant and recurring
Ca2+ signal, and how CaV1.3 channels may contribute to the Ca2+ signal that drives aldosterone
production.
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Abstract figure legend In the intact rosette, ZG cells are electrically excitable, a behavior that is not evident when
cellular associations are disrupted. In the electrically quiescent ZG cell (isolated) T-channel activity is favored and
controls aldosterone output. In health (normal), T-channel activity recruits L-channel opening and together their
activities regulate intracellular calcium to sustain the production of aldosterone. In disease (primary hyperaldosteronism)
functional mutations in L-channels promote their dominant control.

Abbreviations APA, aldosterone producing adenoma; CDI, Ca2+-dependent inactivation; IHA, idiopathic bilateral
zona glomerulosa hyperplasia; PA, primary hyperaldosteronism; RAS, renin–angiotensin system; ZG, zona glomerulosa.

Primary hyperaldosteronism

Circulating aldosterone is synthesized and secreted by
zona glomerulosa (ZG) cells of the adrenal cortex. When
under the control of the renin–angiotensin system (RAS),
aldosterone production is commensurate with the level of
circulating renin. By promoting Na+ retention at multiple
sites along the nephron, aldosterone contributes to the
physiological regulation of electrolytes and water balance.
Excessive aldosterone production independent of the RAS
can occur, as in primary hyperaldosteronism (PA), and is
characterized by a large increase in the aldosterone/renin
ratio (Montori & Young, 2002). Because aldosterone over-
production in PA has additional adverse effects on the
heart (Catena et al. 2008) and kidneys (Rossi et al. 2006)
that are independent of blood pressure elevation, this most
common type of endocrine hypertension is associated with
increased cardiovascular risk (Stowasser, 2001; Savard
et al. 2013). The most common forms of PA result from
two major pathologies: unilateral aldosterone producing
adenoma (APA) and idiopathic bilateral zona glomerulosa
hyperplasia (IHA). With a prevalence of only 4% in the
general population, the incidence of PA rises significantly
among hypertensive patients (> 10%) (Plouin et al. 2004;
Rossi et al. 2006) and markedly among those with resistant
hypertension (20%) (Calhoun et al. 2002a,b; Stowasser,
2014).

Pathogenic mechanisms: insights from human genetic
analysis of channels and pumps

Since 2011, great progress has been made in our under-
standing of the genetic bases for APA. Choi et al.
(2011) were the first group to identify recurrent somatic
mutations in the coding region of the KCNJ5 G-protein
coupled, inwardly rectifying K+ channel in DNA extracted

from aldosterone producing adenomas. These mutations
occur in or near the selectivity filter of the channel
rendering it permeable to Na+. Originally identified in
a small cohort of 22 severely hypertensive patients, these
or functionally equivalent mutations in exon 2 of the
KCNJ5 gene are now the most frequently identified genetic
variants (�38%) in aldosterone-producing adenomas
(Azizan et al. 2012; Boulkroun et al. 2012; Mulatero et al.
2012; Dekkers et al. 2014; Fernandes-Rosa et al. 2014;
Kuppusamy et al. 2014). Less frequent variants have been
identified in the P-type ATPase gene family, ATP1A1 and
ATP2B3, encoding Na+/K+-ATPase and Ca2+-ATPase3,
respectively (�7%) (Azizan et al. 2013; Beuschlein et al.
2013; Fernandes-Rosa et al. 2014). Mutations residing in
transmembrane helices M1 and M4 of the Na+/K+-ATPase
cause loss of functional pump activity, the appearance of
new ouabain-insensitive Na+ or H+ inward leak currents
and cell depolarization (Azizan et al. 2013; Beuschlein et al.
2013). Cell depolarization is also induced by mutations
in the Ca2+-ATPase3 found in the M4 transmembrane
helix that forms the Ca2+ binding pocket of the Ca2+
pump (Beuschlein et al. 2013). By contrast, multiple and
more frequent (5–14%) somatic mutations have been
identified in the CACNA1D gene encoding the CaV1.3
voltage-dependent Ca2+ channel (Azizan et al. 2013; Scholl
et al. 2013; Fernandes-Rosa et al. 2014). These variants
are scattered broadly throughout the large α1 subunit
of the channel protein, and are found in the activation
gate (S6 helices), the voltage sensor (S4 helices) and in
the S4-S5 cytoplasmic linkers connecting the voltage
sensor to the channel pore. In general, these mutations
result in a gain of Ca2+ channel function, increasing
the probability for channel opening at hyperpolarized
potentials, either alone or in combination with a shift
in the voltage dependence of channel inactivation. Some
mutations also dramatically slow the time dependence
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of inactivation. In addition, several germline mutations
in the KCNJ5 gene outside the selectivity filter were
recently described in patients with apparent sporadic PA
(Murthy et al. 2014), and a rare recurrent mutation in the
CACNA1H gene encoding the CaV3.2 voltage-dependent
Ca2+ channel was identified in children presenting with
severe hyperaldosteronism and hypertension (Scholl et al.
2015). The latter mutation found in the IIIS6 domain
markedly slows the time dependence of inactivation of this
rapidly inactivating channel without altering the voltage
dependencies of channel gating.

Interestingly, the mutational status of tumours among
different patient cohorts does not support the hypothesis
that APA is associated with a consistent histological
phenotype; mutations do not segregate according to
cell type (zona glomerulosa, zona fasciculata or mixed).
Neither was there a consistent molecular signature (e.g.
the overexpression of CYP11B2, KCNK5, CACNA1D,
ATP1A1 genes) (Enberg et al. 2004; Lenzini et al. 2007;
Fernandes-Rosa et al. 2014; Boulkroun et al. 2015). One
potential exception may include the CACNA1H gene
whose level of mRNA expression significantly associates
with peripheral blood aldosterone levels, CYP11B2 gene
expression levels and KCNJ5 mutational status in a cohort
of 74 Japanese APA patients (Felizola et al. 2014). A second
exception may involve the KCNK5 gene whose mRNA
expression level inversely correlates with aldosterone
synthesis and microRNA expression in a subcohort of
32 confirmed APA patients of Italian origin (Rossi et al.
2006a; Lenzini et al. 2014). While the universality of these
findings awaits their replication in multiethnic cohorts,
the data in aggregate indicate that APA is a disorder with
highly variable cellular and molecular phenotypes with
diverse genetic underpinnings.

Despite the lack of consistent genotype–phenotype
correlations (Boulkroun et al. 2015; Zennaro et al.
2015), the bulk of evidence supports the hypothesis
that independent, mutational-based mechanisms can
support a persistent elevation in Ca2+ that drives the
overproduction of aldosterone. Specifically, all of these
mutations – directly or indirectly – are expected to raise
intracellular Ca2+ in ZG cells, either by an increase in
Ca2+ channel open probability (CaV1.3, CaV3.2), by a loss
of PMCA3 Ca2+ pump activity, or by a depolarization
in cell membrane potential, an action predicted to
reduce Na+–Ca2+ exchange activity and/or activate
voltage-dependent Ca2+ channels.

Calcium sites of action and regulation of the Ca2+

signal

In the ZG cell, Ca2+ is the critical second messenger
that regulates the production of aldosterone. The
steroidogenic, intracellular Ca2+ signal is generated by
the opening of Ca2+-selective, voltage-dependent channels

found at the plasma membrane, or by the release of Ca2+
from intracellular stores (Fakunding & Catt, 1980; Kojima
et al. 1984; Barrett et al. 1989; Rasmussen et al. 1989).
The subsequent increase in cytosolic Ca2+ facilitates the
delivery of cholesterol to the mitochondria (Cherradi et al.
1996) for its conversion to pregnenolone, a precursor
in the aldosterone biosynthetic pathway. To persistently
increase steroidogenesis, the Ca2+ signal must also be
transferred to the mitochondrial matrix (Lalevee et al.
2003) where it stimulates matrix dehydrogenases to
generate NADH. NADH, in turn, is converted to NADPH,
a cofactor that is required for two critical regulatory
steps in the biosynthetic pathway: (1) the conversion of
cholesterol to pregnenolone catalysed by CYP11A1, and
(2) the conversion of deoxycorticosterone to aldosterone
catalysed by CYP11B2 (Rossier et al. 1996; Wiederkehr
et al. 2011). Thus, a Ca2+ increase in both the cytosolic
and the mitochondrial compartments of the ZG cell is
required to increase the production of aldosterone that
persists for minutes to hours (Spat & Hunyady, 2004).

Voltage-gated calcium currents

Early electrophysiological recordings in rat, bovine and
human ZG cells consistently identified two components
of the Ca2+ current that could be attributed to distinct
Ca2+ channel classes based on voltage-dependent gating
properties, kinetics and pharmacology (Matsunaga et al.
1987; Cohen et al. 1988; Durroux et al. 1988; Payet
et al. 1994). Typically, the more persistent current that
was elicited by strong depolarization (from resting Vm

of −85 mV to > −50 mV (CaV1.3), or > −30 mV
(CaV1.2)) (Xu & Lipscombe, 2001) and inhibited by
dihydropyridines characterized the high voltage-activated
component (HVA). By contrast, the rapid, transient
current that was evoked by weak depolarization (from
resting Vm to > −65 mV) and inhibited by Ni2+
characterized the low voltage-activated component (LVA)
(Tsien et al. 1988). Later, the molecular correlates of
these currents were identified as HVA, L-type (i.e. CaV1.3
and CaV1.2) and LVA, T-type (i.e. CaV3.2 and CaV3.1)
channels. The relative mRNA abundance of L- and T-type
channel isoforms in adrenal ZG varies among studies and
species (Lesouhaitier et al. 2001; Schrier et al. 2001; Rossier
et al. 2003) although their biophysical properties remain
similar. Additionally, functional N-type channels (CaV2.0)
have been recorded in isolated rat ZG cells (Durroux et al.
1988). Thus, the repertoire of Ca2+ channels found in ZG
cells is rich.

More recently, the expression profiles for voltage-gated
Ca2+ channels in normal and pathological human adreno-
cortical tissue were compared (Scholl et al. 2013; Felizola
et al. 2014). mRNA for all three Ca2+ channel classes
was detected in human aldosterone-producing adenomas,
with greater relative abundance of CaV1.3 and CaV3.2
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mRNA than CaV1.2 and CaV2.2 mRNA (Felizola et al.
2014). Surprisingly, the protein expression of CaV1.3
and CaV3.2 channels is consistent regardless of tissue
health, as anti-CaV1.3 or anti-CaV3.2 immunoreactivity
is equivalent in APA, IHA and normal adrenocortical
tissue samples. However, whether all detected protein is
functional remains a critical unanswered question.

Calcium homeostasis: lessons learned from isolated
cells

From the late 1970s to early 1990s, methods to dissociate
and isolate ZG cells from bovine and rat adrenal tissues
led to tractable preparations suitable for measuring ZG
cell Ca2+/K+ currents, intracellular Ca2+ signals and
aldosterone production. Numerous studies document
that the major regulators of aldosterone production,
angiotensin II and extracellular K+, raise intracellular
Ca2+ in ZG cells (Capponi et al. 1984, 1987; Connor
et al. 1987; Kramer, 1988; Johnson et al. 1989; Pratt et al.
1989; Rossig et al. 1996) and that changes in cell Ca2+ are
commensurate with a striking sustained depolarization of
the ZG cell. Angiotensin II elicits ZG cell depolarization by
inhibiting hyperpolarizing conductances, predominantly
those mediated by leak and voltage-gated K+ channels
(Quinn et al. 1987b; Brauneis et al. 1991; Lotshaw, 1997a;
Guagliardo et al. 2012), whereas elevated extracellular K+
induces a shift in the K+ equilibrium potential across
the highly K+-conductive ZG plasma membrane (Quinn
et al. 1987a,b; Lotshaw, 1997b). As depolarization recruits
the activation of voltage-gated Ca2+ channels, these early
findings suggested the possibility that voltage-gated Ca2+
entry is an important contributor to ZG cell activation and
aldosterone production.

With the subsequent development of pharmacological
agents to reduce the open-state probability of selective
Ca2+ channel classes, as well as hormonal and molecular
approaches to alter Ca2+ channel gating mechanisms,
the relative contribution of T-type and L-type Ca2+
currents to the regulation of aldosterone production was
confirmed. Given the extremely hyperpolarized resting
membrane potential of isolated ZG cells (�−85 mV), the
relatively modest �5–20 mV depolarizing shifts in voltage
evoked by physiological concentrations of angiotensin ll or
K+, coupled with robust T-type channel currents recorded
in all preparations, it is not surprising that T-type and
not L-type Ca2+ current amplitude (Barrett et al. 1995;
Rossier et al. 1996; Lotshaw, 2001) strongly correlated with
aldosterone output in these studies (data from 9 previous
studies compiled and reviewed by Rossier (2006)). Thus,
voltage-gated Ca2+ channels have assumed a privileged
role in ZG cell Ca2+ homeostasis.

Framed by the aforementioned and other studies, the
ZG cell came to be regarded as electrically quiescent,
operating over a narrow, relatively hyperpolarized voltage

range in which the open probability of T-type Ca2+
channels is low, but also in which the steady-state
inactivation of the channel is incomplete. The latter,
it was argued, promoted a small-yet-discernible Ca2+
conductance into the ZG cell via a T channel ‘window
current’ that was functionally sufficient to sustain the
production of aldosterone (Cohen et al. 1988; Lotshaw,
2001; Wolfe et al. 2002). However, at odds with this
description of an electrically silent ZG cell were several
findings: (1) angiotensin II elicited oscillatory changes
in cytosolic free Ca2+ in a small percentage of iso-
lated cells that persisted for several minutes before trans-
itioning to a tonic elevation (Johnson et al. 1989);
(2) oscillatory [Ca2+]i responses preferentially evoked
by low concentrations of angiotensin II (Quinn et al.
1988) depended only on voltage-gated Ca2+ entry and
not IP3-induced Ca2+ release (Rossig et al. 1996); (3)
spontaneous Ca2+-dependent voltage spike potentials
were recorded in ZG cells retained within cat adrenal
slices (Natke & Kabela, 1979); and (4) spike potentials
in isolated ZG cells could be evoked by depolarizing
current injection or by pharmacological blockade of
K+ currents (Quinn et al. 1987). More recently, our
laboratory extended these findings and discovered that
ZG cells are indeed electrically excitable when their
cellular connectivity is preserved within a tissue slice
(Hu et al. 2012). Specifically, ZG cells organized within
cortical rosette structures spontaneously generate peri-
odic (�0.5 Hz), large depolarizing amplitude changes
(� +75 mV from −85 mV) in membrane potential
(Vm oscillations) that are modulated in frequency by
angiotensin II and extracellular K+. Collectively, these
observations demonstrate that Ca2+ levels within ZG cells
are highly dynamic and, therefore, motivated a further
evaluation of the excitability of the ZG cell.

Pacemakers in the zona glomerulosa

Many excitable cells, ranging from those found in
invertebrate (Lewis, 1988; Lamb & Calabrese, 2012;
Marder et al. 2015) to mammalian (Steriade et al. 1993;
Marcantoni et al. 2010; Vandael et al. 2010) systems,
have the capacity to generate electrical oscillations,
even when isolated. In many cases, these intrinsic
oscillations are driven by a small ensemble of distinct
ion channels that operate in concert to generate periodic
changes in voltage. These so-called pacemaker channel
conductances often rely on voltage-gated Ca2+ channels
to produce the large, rising phase that characterizes
the depolarizing component of the voltage oscillation.
For example, a well-characterized oscillator reliant upon
T-type Ca2+ channels is found in thalamocortical
neurons of the thalamus, in which an interplay between
T-type Ca2+ channels and hyperpolarization-activated
cyclic nucleotide-gated (HCN) channels drives voltage

C© 2016 The Authors. The Journal of Physiology C© 2016 The Physiological Society



J Physiol 594.20 Voltage-gated channels in the regulation of aldosterone 5855

oscillations likely to be important for memory
consolidation during sleep (Gais et al. 2002; Eschenko
et al. 2006; Fogel et al. 2011). A second, well-characterized
oscillator reliant upon voltage-gated Ca2+ channels is in
the catecholamine secreting adrenal chromaffin cell in
which there is an interplay between CaV1.3 channels and
Ca2+-activated K+ channels (BK, SK). In this cell, the
relatively low threshold for activation of CaV1.3 currents
at interspike potentials (�−50 mV) drives depolarization
and Ca2+ entry which is sufficient to activate BK channels
within restricted Ca2+ domains and highly Ca2+-sensitive
SK channels at more distal sites. Once active these K+
channels hyperpolarize the membrane, remove CaV1.3
channel inactivation and enable the initiation of a new
oscillatory cycle (Marcantoni et al. 2010; Vandael et al.
2010; Vandael & Carbone, 2015).

The recurrent observation that biological pacemakers
often recruit voltage-gated Ca2+ channels to produce
oscillations motivated our laboratory to identify ion
channels that endow the ZG cell with the capacity
to operate as a pacemaker. While such identification
is incomplete, we have learned that targeting NaV1.x
channels with TTX or CaV1.x channels with nifedipine
fails to alter either the amplitude or the frequency of
ZG Vm oscillations. In contrast, low concentrations of
Ni2+ that selectively target CaV3.x channels halt Vm

oscillations, indicating an important contribution of these
low voltage-activated Ca2+ channels to ZG pacemaking
(Hu et al. 2012). Considering that CaV3.2 is the primary
CaV3.x member expressed in the ZG layer, we hypo-
thesize that activation of CaV3.2 channels underlies the
rapidly depolarizing phase of the ZG cell oscillation. The
identification of the ion channel(s) that contribute to
the falling phase remains less well delineated. However,
silencing Vm oscillations with Ni2+ does not cause a hyper-
polarization as would be predicted from block of T-type
Ca2+ current, but rather causes a 20 mV depolarization
from baseline (to �−60 mV), suggestive of a functional
link between CaV3.2 and a Ca2+-activated K+ current(s).
In this model, Ca2+ entry through CaV3.2 channels both
depolarizes the ZG cell and recruits Ca2+-activated K+
channels which serve to hyperpolarize the cell; thus,
the Ni2+-evoked depolarization likely reflects the closure
of the latter. It is notable that the peak amplitude of
CaV3.2 pacemaker current is during the repolarization
phase of the oscillatory cycle; this temporal dependence
would allow CaV3.2 current to activate Ca2+-activated
K+ channels to complete the oscillatory cycle. Together
these data provide evidence, albeit indirect, that a
Ca2+-activated K+ conductance may participate in the
falling phase (hyperpolarization phase) of the ZG cell
oscillation (Fig. 1).

The aforementioned ZG pacemaker model is developed
from observations amassed from normal, wild-type mice.
In adapting these findings to human ZG cells, or to

ZG cell behaviour during pathological conditions, it
is important to consider the potential contribution
of L-type Ca2+ channels (CaV1.3), the mRNA of
which is also found in normal human adrenals,
aldosterone-producing adenomas (Azizan et al. 2013;
Scholl et al. 2013; Fernandes-Rosa et al. 2014) and recently
in aldosterone-producing clusters (Nishimoto et al. 2015)
in addition to that for CaV3.2. Two salient features of
CaV1.3 channels are worth noting when considering
their contribution to ZG function. First, the voltage
range over which CaV1.3 channels carry Ca2+ current
is �25 mV more hyperpolarized than prototypical L-type
Ca2+ channels, potentially enabling them to be active
within the voltage range of the ZG cell oscillation (−85
to −10 mV). Although CaV1.3 channels would not be
active at rest (−85 mV), they would be recruited in the
oscillatory cycle following activation of lower threshold
depolarizing conductances, including CaV3.2 channels.
However, because CaV1.3 channels undergo rapid
Ca2+-dependent inactivation (CDI) (Xu & Lipscombe,
2001), it remains unclear to what extent these channels
contribute to ZG pacemaker function or aldosterone
production under non-pathological conditions. Indeed,
it is worth noting that in animal species that express
T-type and L-type Ca2+ channels (rat, bovine), T-type
current amplitude but not L-type current correlates with
aldosterone production (Barrett et al. 1995; Rossier et al.
1996b; Lotshaw, 2001; Rossier, 2006).

By contrast, it is likely that the contribution of mutant
CaV1.3 channels to exaggerated aldosterone production
is substantial. As discussed above, many gain-of-function
mutations in the CACNA1D gene encoding CaV1.3
channels are observed in aldosterone-producing
adenomas (Azizan et al. 2013; Scholl et al. 2013;
Fernandes-Rosa et al. 2014) and aldosterone producing
clusters (Nishimoto et al. 2015). As many of these
mutations shift CaV1.3 gating properties to substantially
more hyperpolarized membrane voltages, the reliance
of Cav1.3 channel activation on lower threshold
conductances would be mitigated, thereby allowing
channels to open at rest and also to conduct Ca2+ under
a greater inward driving force. In principle Ca2+ entry
could also be augmented by disrupting CDI (Xu &
Lipscombe, 2001). Based on structure–function analysis
of CaV1.3 channels, mutations that alter activation
gating but spare voltage-dependent inactivation (VDI)
would be most likely to alter CDI (Tadross et al. 2010).
However, to date most mutations in APAs have not
been experimentally tested for disrupted CDI and in
the one study that has, CDI remained unperturbed
(Scholl et al. 2013). Nevertheless, the modulation of
this channel gating property of CaV1.3 could provide
an additional mechanism for regulating Ca2+ entry and
cellular excitability by altering the rate of spontaneous
and evoked oscillations independent of changes in the
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voltage gating properties of CaV1.3 channels (see Fig. 1;
Scharinger et al. 2015).

Potential relevance of ZG oscillations

If we accept the new place of the ZG cell among
pacemakers, what then is the physiological relevance of
ZG voltage oscillations? Do ZG cell voltage oscillations
simply exist to recruit a range of voltage-dependent Ca2+
conductances that collectively ensure a significant rise in
cytosolic Ca2+ such that aldosterone is produced? In such
a context, ZG Ca2+ oscillations would be epiphenomenal,
i.e. a large, non-periodic increase in cytosolic Ca2+ could
achieve the same effect. Or do periodic oscillations provide
a unique opportunity for Ca2+ channels with divergent
biophysical properties to subserve singular functions in
regulating ZG cell activity and aldosterone production?
Support for such a possibility comes directly from ZG
studies and also from many more summarized and
formalized by McCobb and Beam (1991).

First, as determined by oscillatory voltage-clamp
experiments conducted in ZG cells, ZG Vm oscillations
are sufficient in magnitude and correct in frequency
to drive repetitive, large-amplitude CaV3.2-mediated
currents known as low threshold calcium spikes. Thus, Vm

oscillations in ZG cells provide a mechanism for rapidly
inactivating CaV3.2 channels to generate long-lasting,
periodic Ca2+ signals in ZG cells that would be much
larger than those associated with T-channel window
currents reliant upon incomplete channel inactivation
(Hu et al. 2012). Second, because T-type Ca2+ channels
have the lowest threshold for activation and have a
relatively slow rate of closure (deactivation), Ca2+ entry
through these channels is driven by more negative driving

forces. Thus, Ca2+ entry can be quite large and is
favoured in response to a rapidly repolarizing oscillatory
wave-form (McCobb & Beam, 1991), such as recorded
in ZG cells. Third, because L-type Ca2+ channels have
a more depolarized inactivation threshold and slower
inactivation kinetics, entry through L-type Ca2+ channels
would be favoured in response to oscillatory waveforms
that decay/repolarize slowly and have extended durations.
Thus, as has been elegantly demonstrated and formalized
by McCobb and colleagues, because of the high sensitivity
of L-type Ca2+ channels to the width of the oscillatory
waveform, L-type Ca2+ channels would provide the ZG
cell with a mechanism to report activity changes in
K+ channels that control the rate of repolarization. By
contrast, given the relative insensitivity of T-type Ca2+
channels to oscillatory waveform width (McCobb &
Beam, 1991), Ca2+ entry through T-type channels would
better report ZG oscillation frequency. Thus, although
each channel type can convert an electrical signal into
a chemical Ca2+ response, when presented with an
oscillatory electrical signal they do so advantaged by
their biophysical properties. Thus, ZG Vm oscillations
may allow the cell to functionally compartmentalize the
contribution of distinct voltage-gated Ca2+ channels.

Finally, it is important to consider how ZG cells might
process a periodic Ca2+ signal and how such a signal
could control the rate of aldosterone production. In this
regard the biochemical and computational studies of
Ca2+/calmodulin-dependent protein kinase (CaM kinase
II) are noteworthy. In this multimeric enzyme complex,
individual subunits of CaMKII are activated by high
threshold periodic pulses of Ca2+. After the threshold
for kinase activation is attained, some subunits are
trans-phosphorylated at Thr286 to generate a persistent,
subthreshold kinase activity that is autonomous of the

10
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Cav3.2
Figure 1. A working model of the ZG
pacemaker
At the start of the oscillatory cycle (Vm = −85 mV),
depolarizing conductance(s) (Xv) elicit the opening
of low voltage-activated Cav3.2 channels which
further depolarize Vm and enable the opening of
high voltage-activated Cav1.3 channels. Ca2+
influx and a reduced Vm recruits the activity of
Ca2+-dependent K+ channels that return Vm to
−85 mV to begin another oscillatory cycle.
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Ca2+ signal (Hanson et al. 1989). This positive feedback
loop augments responses to low frequency stimuli and
allows CaMKII to act as a decoder of the frequency of
oscillatory Ca2+ signals (De Koninck & Schulman, 1998).
In a similar manner, it is formally possible that periodic
Ca2+ signals within ZG cells are more potent drivers of
aldosterone production than static Ca2+ signals, because
in ZG cells CaMKII activation induces a hyperpolarizing
shift in the V1/2 of activation of T-type channels (Welsby
et al. 2003; Yao et al. 2006). Such an increase in T-current
amplitude could thus provide a greater depolarizing
current for L-type channel recruitment further increasing
extracellular Ca2+ entry. This possibility awaits future
examination.

Final remarks

Here, we provide a brief review of recent mutational
analyses performed on human adrenal tissues associated
with excessive aldosterone production, and address how
the newly defined ZG pacemaker cell, by driving the cell to
membrane potentials that support channel activity, may
unmask these mutations, many of which are associated
with voltage-dependent ion channels. In attempting
to address the latter, we are confronted with many
uncertainties. Clearly, to completely understand how a
mutated ion channel contributes to excessive steroidogenic
signalling, we must first better define the collection of
ionic conductances that govern ZG cell excitability in the
normal, healthy state. And yet, our current knowledge of
the ionic conductances that drive ZG pacemaker activity
is primarily limited to how the low threshold, T-type
Ca2+ channel (CaV3.2) drives ZG membrane potential
to depolarized levels. To this end, we must also define all
currents that mediate the rapid repolarization phase of
the ZG pacemaker oscillation. Only when all the relevant
channels comprising the ZG pacemaker are identified
and the pacemaker regulation of aldosterone production
is known, will we be able to fully understand by what
means specific mutations support greater aldosterone
production. Clearly, the future remains an exciting time
for ion channel physiology within the realm of adrenal
function.
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