- **So far**: the building blocks of neurons/networks
 - ion channels
 - resting potential
 - action potential
 - synapses
- **Now**: we build a network
 - networks in the thalamus
 - the importance of time (i.e. brain rhythms)

Brain Rhythms

- **So far**: the building blocks of neurons/networks
 - ion channels
 - resting potential
 - action potential
 - synapses

100 millisec

- **Now**: we build a network
 - networks hwww.linehamus
 - ◆ the importance of oim ត្តl(isec brain rhythms)

NeuropaliNetworks

Sleep Stages

Brain Rhythms

Brain

Sleep Stages

Brain Rhythms

Brain

thalamus

Sleep Spägeles

Brain Rhythms

Low Threshold Calcium Channel

low threshold calcium channel

- opens with depolarization
- inactivated state *cannot* open
- de-inactivates (aka primes) with hyperpolarization

Low Threshold Calcium Channels are called Low Threshold because:

- **A**. They are primarily expressed in lower vertebrates.
- **B**. Hyperpolarization lowers their threshold for activation.
- **C**. They are activated at relatively hyperpolarized membrane potentials.
- **D**. They easily get angry.

Low Threshold Calcium Channel

Low Threshold Calcium Channels are called Low Threshold because:

- A. They are primarily expressed in lower vertebrates.
- B. Hyperpolarization lowers their threshold for activation.
- C. They are activated at relatively hyperpolarized membrane potentials.
- D. They get angry easily.

Which Statement is True?

- **A**. A de-inactivated L-T Ca²⁺ channel is open.
- **B**. If depolarized, an inactivated L-T Ca²⁺ channel will open.
- **C**. Hyperpolarization de-inactivates L-T Ca²⁺ channels.
- **D**. Hyperpolarization opens L-T Ca²⁺ channels.

Low Threshold Calcium Channel

Which Statement is true?

- A. A de-inactivated L-T Ca²⁺ channel is open.
- B. If depolarized, an inactivated L-T Ca²⁺ channel will open.
- C. Hyperpolarization de-inactivates L-T Ca²⁺ channels.
- D. Hyperpolarization opens L-T Ca²⁺ channels.

Which statement is the *most* true?:

- A. Neurons can turn on in response to excitation.
- **B**. Neurons can turn on in response to inhibition.
- C. Both A & B are false.
- D. Both A & B are true.

Which statement is the most true?:

- A. Neurons can turn on in response to excitation.
- B. Neurons can turn on in response to inhibition.
- C. Both A & B are false.
- D. Both A & B are true.

Prolonged inhibition of thalamocortical (TC) neurons will cause:

- **A**. Weaker TC firing activity *during* the inhibition.
- **B**. Weaker TC firing activity after the inhibition.
- **C**. Stronger TC firing *during* the inhibition.
- **D**. Stronger TC firing *after* the inhibition.
- **E**. A & B.
- F. A & D.

Prolonged inhibition of thalamocortical (TC) neurons will cause:

- A. Weaker TC firing activity *during* the inhibition.
- B. Weaker TC firing activity *after* the inhibition.
- C. Stronger TC firing *during* the inhibition.
- D. Stronger TC firing *after* the inhibition.
- E. A & B
- F. A & D

Network

Sleep Spindle

Sleep Spindle

Network

Seizure

Which one is Boston?:

Neuronal Networks: Summary

